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range of temperatures. We focus on spectral quantities of the Dirac operator and use the

temporal fermionic boundary conditions as a tool to probe the system. We determine the

deconfinement temperature through the Polyakov loop, and the chiral symmetry restoration

temperature for adjoint fermions through the gap in the Dirac spectrum. This chiral

transition temperature is about four times larger than the deconfinement temperature. In

between the two transitions we find that the system is characterized by a non-vanishing

chiral condensate which differs for periodic and anti-periodic fermion boundary conditions.

Only for the latter (physical) boundary conditions, the condensate vanishes at the chiral

transition. The behavior between the two transitions suggests that deconfinement manifests

itself as the onset of a dependence of spectral quantities of the Dirac operator on boundary

conditions. This picture is supported further by our results for the dual chiral condensate.
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1 Introductory remarks

Confinement and chiral symmetry breaking are two outstanding properties of Quantum

Chromodynamics (QCD), shaping all of nuclear physics. The emergence of both these

phenomena depends on non-perturbative mechanisms, but it is an open question if and

how the respective mechanisms are related, or what they are in detail. Each phenomenon

is connected with a particular symmetry becoming broken or restored in certain limits of

the theory.

From the moment on, at which the existence of phase transitions in QCD was realized,

the question whether deconfinement and chiral symmetry restoration are related to different

transition temperatures, Tdec and Tch, was posed. Because of the dual role of quarks, with

quarks being confined on one hand, and their role in the (chiral) hadron dynamics on the

other hand, this question was asked in the first instance about fermions in the fundamental

representation. For this case a consensus [1] based on lattice gauge theory calculations

has formed that, at least as long as no finite baryonic chemical potential µ is involved, the

temperature driven phase transition happens at roughly the same temperature, Tdec ≃ T
(f)
ch ,

where we use the superscript (f) to indicate the fundamental representation.1

Fermions, and thus implicitly also chiral symmetry, play a role also outside QCD,

e.g., for model building beyond the standard model [2]. In particular in many of those

theories [3], like supersymmetry and technicolor, fermions in other representations appear,

in particular adjoint ones. There is no a priori reason to expect the same transition

temperature for such fermion representations.

1For most quark masses, including likely the physical ones, there is a crossover instead of a genuine

phase transition [1] in full QCD. Thus, there is no qualitative distinction of the low- and high-temperature

phase, despite their historic names. In quenched QCD (”gluodynamics”), however, a second or first order

phase transition exists.
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Such gauge theories with adjoint fermions have been investigated since the early days

of lattice simulations [4–9]. In this case, it is well established that, at least for the gauge

groups investigated so far, the deconfinement temperature Tdec and the chiral restoration

temperature T
(a)
ch of adjoint quarks do not coincide, the latter being generally significantly

larger than the former.

Aside from the practical considerations of theories beyond the standard model, this

requires that any mechanism proposed as an explanation for the equality Tdec ≃ T
(f)
ch must

at the same time provide an explanation for the inequality Tdec 6= T
(a)
ch . Such attempts

have been made already. E. g., to capture the characteristic temperatures T
(r)
ch of chiral

symmetry restoration for some representation r, a hypothetical Casimir scaling law has

been proposed [10, 11], C
(r)
2 g2(T

(r)
ch ) = const ≈ 4, and discussed in the light of early lattice

results in refs. [4, 5]. Here C
(r)
2 is the eigenvalue of the quadratic Casimir operator that

characterizes the fermion representation r, and g2 is the running coupling.

Out of the necessity to explain the difference it is also possible to construct a virtue:

The fact that for adjoint fermions the temperatures for deconfinement and chiral symmetry

restoration are different, makes such theories an important testbed to study confinement

and chiral symmetry breaking individually. In this way one may hope to understand mech-

anisms responsible for the two phenomena and to identify possible aspects shared by both.

This point of view is the motivation for the present work: In a series of recent pa-

pers [12–16] the question of a possible connection between confinement and chiral symmetry

breaking has been attacked by constructing new combined observables which are sensitive

to both, confinement and chiral symmetry breaking. One example is the ”dual chiral

condensate” [13], which is obtained as the first Fourier component of the chiral quark con-

densate with respect to a generalized temporal boundary condition for the fermions. It may

be shown [13] that the dual chiral condensate for fundamental fermions is a sum of general-

ized (i.e., non-straight) Polyakov loops and thus is an order parameter for center symmetry

and therefore for confinement (at least in the quenched case). On the other hand, since it

is built from the usual chiral condensate, it is also sensitive to chiral symmetry breaking.

This observable can be used to characterize the deconfinement temperature Tdec as

the one above which spectral quantities of the Dirac operator (e.g., the chiral condensate)

become sensitive to a change of the temporal fermion boundary conditions [13]. The origin

of the tie to chiral symmetry is the density of Dirac eigenvalues at the origin, due to the

Banks-Casher relation [17]. This characterization is further underlined by the fact that

both the chiral condensate and the gap in the Dirac spectrum above Tdec are quantities

that depend on the fermionic boundary conditions (relative to the phase of the Polyakov

loop) [18–20]. For the case of SU(2) Yang-Mills theory the detailed circumstances suggest

the following microscopic explanation [21] for that dependence: For periodic boundary

conditions low-lying modes exist that are localized on ”light dyons”, whereas ”heavy dyons”

are suppressed. The latter would otherwise be carriers of low-lying modes under anti-

periodic boundary conditions. In this picture, the different abundance of light and heavy

dyons in turn results from the non-vanishing fundamental Polyakov loop.

The central motivation for the present investigation is the question to what extent
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the interrelations between deconfinement, chiral symmetry restoration and the fermionic

boundary conditions carry over to the case of fermions in the adjoint representation of

the gauge group. Of particular interest is the behavior in the intermediate phase, i.e., at

temperatures Tdec(≃ T
(f)
ch ) ≤ T ≤ T

(a)
ch . For this range we will show that the condensate

is still finite and no spectral gap has opened, but the fermionic quantities do already feel

the boundary conditions. Concerning the dual chiral condensate we will establish that it

is sensitive to both the deconfinement and chiral restoration transitions.

2 Setup of the calculation

In our analysis we study quenched SU(2) configurations generated with the Symanzik

improved gauge action [22] using the fundamental representation. We explore a wide range

of inverse couplings β, between β = 2.5 and β = 4.6, increasing β in steps of ∆β = 0.1.

Using Metropolis updates, for each value of β we generate 100 configurations in each of

our ensembles on two volumes, N3 ×NT = 103 × 4 and 123 × 4.

The fundamental gauge links Uµ(x) are converted to the adjoint representation

Uadj
µ (x)ab ≡

1

2
Tr [σa Uµ(x)† σb Uµ(x) ] , (2.1)

where σa, a = 1, 2, 3 are the Pauli matrices. The adjoint links are used in the massless

staggered lattice Dirac operator (we set the lattice spacing to a = 1)

D(x, y) =
∑

µ

ηµ(x) [ Uadj
µ (x) δx+µ̂,y − Uadj

µ (x− µ̂)† δx−µ̂,y ] , (2.2)

where ηµ(x) is the staggered sign function ηµ(x) =
∏µ−1

ν=1(−1)xν .

For the staggered lattice Dirac operator we evaluate complete eigenvalue spectra us-

ing a parallel implementation of standard linear algebra routines. The staggered Dirac

operator is anti-hermitean and consequently the eigenvalues λj are purely imaginary. The

eigenvalues for the Dirac operator with mass m are then given by λj +m.

In our analysis we systematically explore the role of the temporal fermionic boundary

conditions, which may be written as

ψ(~x,NT ) = eiϕ ψ(~x, 0) , (2.3)

where the ”boundary angle” ϕ parameterizes the boundary condition. A value of ϕ = π

corresponds to the usual anti-periodic boundary conditions. However, here in addition

we explore also periodic and more general boundary conditions, and the boundary angle

ϕ is considered as an additional parameter to probe the system. Furthermore, for the

construction of the aforementioned dual chiral condensate we need a Fourier integral over

ϕ which is approximated by using altogether 8 values of ϕ in the interval [0, 2π). To be

specific, we compute complete Dirac spectra for the two boundary conditions ϕ = 0 and

ϕ = π for all 100 configurations in our ensembles, while spectra for the additional values ϕ =

π/4, π/2, 3π/4, ... needed for the dual chiral condensate were evaluated for subensembles

consisting of only 20 configurations for each volume and β. For completeness we remark,

that all other boundary conditions, i.e., the spatial fermionic boundary conditions and the

boundary conditions for the gauge fields, were kept periodic.
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Figure 1. Gluonic observables for our quenched gauge ensembles. We show the fundamental and

adjoint plaquette expectation values as a function of the inverse coupling β (top row of plots), and

the fundamental and adjoint Polyakov loops (bottom row). Results for both volumes, 103 × 4 and

123 × 4 are displayed.

3 Plaquette and Polyakov loops

We begin our discussion of the numerical results with purely gluonic quantities, the plaquet-

te expectation values and the (spatially averaged) Polyakov loops in both the fundamental

and the adjoint representations.

In figure 1 we compare the fundamental and adjoint plaquette expectation values (top

row) and the fundamental and adjoint Polyakov loops (bottom row) plotted as a function

of the inverse gauge coupling β. The fundamental Polyakov loop can be used to determine

the critical inverse gauge coupling where we observe the deconfinement transition on our
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lattice with NT = 4, at a value of βdec = 2.8. This corresponds2 to about T = 215 MeV,

and thus is very far from the continuum and infinite-volume limit of about 300 MeV [24].

Our plots clearly indicate that a comparison of the data for the two different volumes,

103 × 4 and 123 × 4, reveals only very small finite volume effects.

It is a remarkable fact that also the adjoint Polyakov loop shows a changing behavior at

the onset of the deconfinement transition. Since it is invariant under center transformations,

there is no a-priori reason for this. This behavior will be one contribution to the sensitivity

of the adjoint dual chiral condensate discussed below. However, the impact on the adjoint

Polyakov loop by the breaking of center symmetry could be spurious: Adjoint fermions can

be screened by a single gluon. Thus, even for static adjoint quarks string breaking occurs

for all temperatures [25], and there is no deconfinement in the same sense as there is none

for full QCD. Hence, in the infinite-volume and continuum limits, the adjoint Polyakov

loop is non-zero in all phases. It is not an order parameter for center symmetry.

The fact that on a finite lattice an imprint of the deconfinement transition still exists

has also been observed in G2 Yang-Mills theory [26, 27], and is thus not surprising. Still,

this demands caution in the interpretation of adjoint quantities, and the value of the adjoint

Polyakov loop has to be interpreted rather as a lattice artifact than as a signal, as long as

it cannot be unambiguously established that other effects drive its modification.

4 Spectral gap and chiral condensate

Let us now come to fermionic observables related to chiral symmetry breaking and its

restoration. In this respect an important result is the Banks-Casher formula [17] which

relates the chiral condensate to the density ρ of Dirac eigenvalues at the origin,

〈ψ ψ 〉 = −π ρ(0) . (4.1)

This result is independent of the gauge group and its representation. As long as chiral

symmetry is broken we thus expect that the eigenvalues of the Dirac operator extend all

the way to the origin and build up a non-vanishing density ρ(0) there. As one crosses the

critical temperature, the chiral condensate vanishes and so must ρ(0). At least on finite

spatial volumes one observes the opening of a gap in the spectrum at a corresponding

critical coupling β
(a)
ch .3

For the case of adjoint SU(2) we expect that chiral symmetry is restored at a higher

temperature than the one where we observe deconfinement and thus expect that the spectral

gap remains closed beyond βdec = 2.8. This is exactly what we observe in the l.h.s. plot

of figure 2. Using lattice units we show the spectral gap defined as the expectation value

〈a|λmin|〉 of the smallest eigenvalue as a function of β. The plot clearly shows that the

gap remains closed above βdec = 2.8 all the way up to β
(a)
ch = 3.6, corresponding to about

870 MeV, where it starts to open (again we use the superscript (a) to denote the critical β

for the adjoint representation). We observe that the discrepancy between the two volumes

2For a string tension of
√

σ = 440 MeV, using a
2
σ results from [23].

3With the currently available results it cannot be excluded that in the thermodynamic limit the gap

closes such that the eigenvalues extend all the way to the origin, but still have a vanishing density ρ(0) [28].
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Figure 2. Spectral gap in lattice units of the Dirac operator for adjoint fermions as a function of

the inverse coupling β. We compare anti-periodic temporal boundary conditions for the fermions

(l.h.s. plot) to periodic boundary conditions (r.h.s.). Results for both volumes, 103× 4 and 123× 4,

are displayed.

which are accessible to us, 103×4 and 123×4, is small with a light trend towards a smaller

gap for the larger spatial volume.

One may compare the two critical inverse couplings βdec = 2.8 and β
(a)
ch = 3.6 also in

terms of temperatures. One finds that the deconfinement temperature and the temperature

for chiral symmetry restoration behave as

T
(a)
ch ≃ 4(1)Tdec . (4.2)

The error is a rough estimate based on the discrepancy of the determined deconfinement

temperature and the known infinite-volume continuum value. Still, both transitions are

different. However, they are much closer than in the case of (dynamical) SU(3) QCD,

where they differ by a factor of 7.8(2) [8, 9].

Let us now discuss the r.h.s. plot of figure 2 which differs from the l.h.s. by the use

of periodic temporal boundary conditions for the fermions instead of the canonical anti-

periodic choice. Obviously the spectral gap remains closed when the periodic temporal

boundary conditions are used for the fermions. This behavior is in agreement with what

was found also for the gauge groups SU(3), SU(2) and G2 in the fundamental representa-

tion [19, 20, 26].

The next step is to explore the dependence of the chiral condensate on the temperature

and the boundary conditions directly. For this purpose, the condensate is determined in

the same way as in [26], using both methods. In figure 3 we plot the chiral condensate in

lattice units as a function of the inverse gauge coupling β and compare periodic (upper

two curves) and anti-periodic (lower two curves) temporal boundary conditions for the

fermions. Triangles are used for the larger 123 × 4 lattice, while the smaller 103 × 4 lattice

is represented by upside-down triangles. For the anti-periodic boundary conditions we

observe that the condensate remains finite up to about β
(a)
ch = 3.6, the critical value where

we observed the opening of the spectral gap, and vanishes for larger β. The situation

is different for the condensate with periodic boundary conditions where we find that the

– 6 –
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Figure 3. The chiral condensate in lattice units as a function of the inverse gauge coupling

β. We show the results for both volumes, 103 × 4 and 123 × 4, and compare periodic and anti-

periodic temporal boundary conditions for the fermions. Note that this is the unrenormalized chiral

condensate.

condensate remains finite above β
(a)
ch = 3.6, as could be already expected from the fact

that no spectral gap appears (compare figure 2). Again we find that the results for the

two volumes essentially fall on top of each other — only for the periodic case at the largest

values of β we observe sizable finite volume effects. However, at such large values of β the

spatial volume becomes so small that the results can be taken only as indicative. Still,

since the major effects investigated, i. e., the chiral and deconfinement phase transitions,

occur at β < 4, where no such effects are visible, the conclusions are likely not affected

qualitatively by this limitation. It would be necessary to use significantly larger volumes

to obtain a better systematic accuracy.

Let us finally stress an important aspect of our results for the chiral condensate: By

comparing the data for periodic and anti-periodic boundary conditions at the smallest

values of β we find that the results for the condensate fall on top of each other. This is

true up to the value of β = 2.8 = βdec. Beyond the value of the deconfinement transition

we observe that the results for the condensate at periodic and anti-periodic boundary

conditions start to differ. The condensate for the anti-periodic case begins to drop relative

to the periodic data until it reaches zero near β
(a)
ch = 3.6. In between the two transitions

we observe a finite chiral condensate for both boundary conditions but the values differ.

Note that the effect is significantly stronger than the systematic finite-volume errors.

This finding underlines the characterization of deconfinement and chiral symmetry

– 7 –
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restoration given in [13]: The deconfinement transition is characterized by the onset of a

dependence of the Dirac spectrum on the fermionic boundary conditions. Chiral symmetry

restoration is seen only for the physical anti-periodic boundary conditions and, according

to the Banks-Casher formula, is manifest through a vanishing spectral density at the origin.

5 The dual chiral condensate

In a series of papers [12, 13, 15] observables were developed that are sensitive to both,

chiral symmetry and confinement. One such observable is the dual chiral condensate Σ1

which is defined as the first Fourier component of the chiral condensate with respect to the

fermionic temporal boundary condition [13],

Σ1 = −
1

2π

∫ 2π

0
dϕ e−iϕ

〈

ψψ
〉(ϕ)

m
=

1

2πV

∫ 2π

0
dϕ

∑

j

e−iϕ

λ
(ϕ)
j +m

. (5.1)

In our notation the superscript (ϕ) indicates which fermionic boundary condition is used.

In the second step of (5.1) we have inserted the spectral sum for the Dirac operator. The

integral over the boundary angle is approximated with 8 values of ϕ in the interval [0, 2π)

using the Simpson rule. This procedure was shown to give rise to uncertainties for the

numerical integral in the one percent range [13], in case of the smooth dependence on the

boundary angle observed here.

The dual chiral condensate Σ1 may be viewed as a collection of generalized Polyakov

loops: Like any other gauge invariant quantity on the lattice the scalar expectation value

〈ψψ〉m can be expressed as a collection of closed loops on the lattice which are dressed

with link variables. These loops may be distinguished by their winding number around the

compactified time direction and the Fourier transformation with respect to the boundary

angle ϕ in (5.1) projects to the equivalence class of loops that wind once. Consequently

these loops that build up Σ1 transform under center transformations like the conventional

straight Polyakov loop. Thus in the quenched theory with (current) fermions in the fun-

damental representation Σ1 serves as order parameter for center symmetry and thus for

confinement. In addition, for small enough quark mass m the observable becomes sensitive

to chiral symmetry breaking since it is derived from the conventional chiral condensate. In

the limit of large quark mass longer loops are suppressed and Σ1 approaches the conven-

tional straight Polyakov loop (with a different overall normalization).

Since for adjoint fermions deconfinement and chiral symmetry restoration appear at

different temperatures, it is an interesting question how the adjoint dual chiral condensate

behaves in this situation. Furthermore, as discussed above, the adjoint Polyakov loops

from which the adjoint dual chiral condensate is constructed, are invariant under center

transformations. The behavior of the adjoint dual chiral condensate is therefore much

harder to predict on general grounds than in the fundamental case.

In figure 4 we show our results for the dual chiral condensate as a function of the

inverse gauge coupling β. In the l.h.s. plot we consider a situation which corresponds

essentially to the chiral limit (am = 0.005), while on the r.h.s. we use a rather large

quark mass (am = 0.4) where Σ1 is expected to behave similar to the conventional straight

– 8 –
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Figure 4. The dual chiral condensate Σ1 in lattice units as a function of the inverse gauge coupling

β. We show the results for both volumes, 103 × 4 and 123 × 4, and compare two different quark

masses.

Polyakov loop. The plots show clearly that Σ1 starts to rise at the deconfinement transition

at βdec = 2.8. Since the dual chiral condensate is the first Fourier component of the

condensate with respect to the fermionic boundary conditions, its behavior supports the

characterization of the deconfinement transition as the onset of dependence of fermionic

quantities on the femrionic boundary conditions.

Comparison of the two plots in figure 4 shows that only for the small quark mass Σ1

also the chiral symmetry restoration at β
(a)
ch = 3.6 is resolvable. In the l.h.s. plot we observe

a maximum of Σ1 at this coupling. Beyond this value we find a decreasing behavior. In the

r.h.s. plot, where the rather large mass am = 0.4 was used, we find no signal at β
(a)
ch = 3.6

and, as expected, Σ1 behaves similar to the conventional straight Polyakov loop in the

adjoint representation (compare figure 1), i.e., displays a monotonically rising behavior

beyond βdec = 2.8.

6 Summary and discussion

In this paper we have revisited the phenomenon of different deconfinement and chiral sym-

metry restoration temperatures of gauge theories coupled to adjoint fermions. In our study

of quenched SU(2) gauge configurations we have focused on analyzing a set of observables

related to the spectrum of the lattice Dirac operator. An important tool in this analysis

was the use of generalized temporal fermionic boundary conditions. The corresponding

boundary angle serves as an additional parameter to probe the system.

We confirm that for adjoint fermions the deconfinement transition (determined by the

Polyakov loop expectation value) and the chiral symmetry restoration (identified by the

opening of a gap in the Dirac spectrum), are different with T
(a)
ch = 4(1)Tdec. We find

that also fermionic quantities are affected by the deconfinement transition, in particular

at the deconfinement temperature a dependence of the chiral condensate on the fermionic

– 9 –
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boundary condition becomes manifest. Between the two transitions the system is charac-

terized by a chiral condensate which differs for different boundary conditions, but for the

physical anti-periodic boundary conditions still has not reached zero. This happens at the

second transition T
(a)
ch where chiral symmetry is restored, i.e., the chiral condensate finally

vanishes. However, we do not find any indications of this being related to a thermody-

namic phase transition of the pure gauge system, at least in any gluonic observable we

have investigated. This would be in line with observations for the dynamical case [8, 9].

The only affected quantities are fermionic ones: For periodic temporal fermion boundary

conditions the condensate remains finite for all temperatures (i.e., all gauge couplings) we

considered, though the systematic uncertainty increases quickly for β > 4. Finally we find

that the dual chiral condensate indeed sees both transitions, thus providing support that

this observable is sensitive to both confinement and chiral symmetry breaking. Still, a

careful study of the thermodynamic limit is mandatory for a firm conclusion, in particular

at temperatures beyond the chiral phase transition.

An interesting question is how the picture changes when dynamical adjoint quarks

would be used. From dynamical SU(3) QCD studies [8, 9] it is known that the back-

reaction of the fermions on the gluon field is minor for large masses in the sense that

the chiral phase transition at T
(a)
ch ≈ 7.8(2)Tdec has no strong effect on the remaining

observables. On the other side it is known that the deconfining phase transition is mainly

unaffected by the presence of dynamical adjoint fermions, the chiral symmetry of which

is broken for all T < T
(a)
ch . However, in contrast to the pure SU(3) Yang-Mills theory,

the deconfining phase transition is of strong first order. Nonetheless, we expect that the

picture developed here, i.e., an intermediate phase where fermionic quantities do already

depend on the temporal fermionic boundary conditions but the chiral condensate is still

non-vanishing, carries over to the full dynamical theory, since this effect should not be

affected by the order of the phase transition.

Our analysis has increased the amount of known phenomenological facts about systems

with deconfinement and chiral symmetry restoration transitions. In particular the role of

the fermionic boundary conditions, which have become an important issue in recent years,

was clarified for a system with adjoint fermions. It is obvious that any future microscopic

explanation of the deconfinement and chiral symmetry restoration transitions will have to

describe the dependence on boundary conditions correctly.

A particular highlight of the results is that, since the calculations have been quenched,

all the mechanisms usually associated with chiral restoration, like modification of topolog-

ical properties, cannot be responsible for the restoration of the adjoint chiral symmetry:

All of these effects occur at Tdec, unmodified in the quenched calculation. The dynami-

cal origin of adjoint dynamics is therefore fundamentally and qualitatively different from

the one for fundamental dynamics. Especially, as all dynamics driving fundamental chiral

symmetry breaking cease at a quarter of the temperature T
(a)
ch , they alone cannot provide

adjoint chiral symmetry breaking. In particular, this implies a very strong adjoint-quark-

gluon dynamics in the high-temperature phase to keep chiral symmetry broken, but since

everything is quenched, this implies strong gluon dynamics even at 4Tdec (or nearly 8Tdec

for SU(3)).

– 10 –
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